MIL-S-19500/71D 29 June 1967 SUPERSEDING MIL-S-19500/71C 17 January 1961 (See 6.3)

MILITARY SPECIFICATION

SEMICONDUCTOR DEVICE, TRANSISTOR, PNP, GERMANIUM, LOW-POWER TYPE 2N1195

This specification is mandatory for use by all Departments and Agencies of the Department of Defense.

1. SCOPE

- 1.1 Scope. This specification covers the detail requirements for a low-power, PNP, germanium, transistor.
 - 1.2 Physical dimensions. See figure 1 (TO-5).

1.3 Maximum ratings.

P _T 1/	$I_{\mathbf{E}}$	IC	v _{CBO}	v_{EBO}	VCEO	$ extsf{T}_{ extsf{stg}}$
$T_A = 25^{\circ} C$						
mW	mAdc	mAdc	Vdc	<u>Vdc</u>	<u>Vdc</u>	<u>°C</u>
250	40	-40	-30	-1.0	-20	-65 to +100

^{1/} Derate 3.33 mW/°C for $T_A > 25$ ° C.

1.4 Primary electrical characteristics.

	h_{fe} $V_{CB} = -10 \text{ Vdc}$ $I_{E} = 10 \text{ mAdc}$ $f = 100 \text{ MHz}$	h_{fb} $V_{CB} = -10 \text{ Vdc}$ $I_E = 10 \text{ mAdc}$	h _{ib} V _{CB} = -10 Vdc I _E = 10 mAdc	h _{ob} V _{CB} = -10 Vdc I _E = 10 mAdc
Min Max	4	0.96 0.995	<u>ohms</u> 10	<u>μmho</u> 2 0

2. APPLICABLE DOCUMENTS

2.1 The following documents, of the issue in effect on date of invitation for bids or request for proposal, form a part of the specification to the extent specified herein.

SPECIFICATION

MILITARY

MIL-S-19500 - Semiconductor Devices, General Specification for.

STANDARDS

MILITARY

MIL-STD-202 - Test Methods for Electronic and Electrical Component Parts.
MIL-STD-750 - Test Methods for Semiconductor Devices.

(Copies of specifications, standards, drawings, and publications required by suppliers in connection with specific procurement functions should be obtained from the procuring activity or as directed by the contracting officer.)

3. REQUIREMENTS

- 3.1 General. Requirements shall be in accordance with MIL-S-19500, and as specified herein.
- 3.2 Abbreviations, symbols, and definitions. The abbreviations, symbols, and definitions used herein are defined in MIL-S-19500.
- 3.3 Design, construction, and physical dimensions. Transistor shall be of the design, construction, and physical dimensions shown on figure 1.
- 3.3.1 Lead material and finish. Lead material and finish shall be gold-plated Kovar. (Leads may be tin-coated if specified in the contract or order, see 6.2.)
- 3.4 Performance characteristics. Performance characteristics shall be as specified in tables I, II, and $I\overline{II}$.
- 3.5 <u>Marking</u>. The following marking specified in MIL-S-19500 may be omitted from the body of the transistor at the option of the manufacturer:
 - (a) Country of origin.
 - (b) Manufacturer's identification.

4. QUALITY ASSURANCE PROVISIONS

- 4.1 Sampling and inspection. Sampling and inspection shall be in accordance with MIL-S-19500, and as specified herein.
- 4.2 Qualification inspection. Qualification inspection shall consist of the examinations and tests specified in tables I, II, and III.
- 4.3 Quality conformance inspection. Quality conformance inspection shall consist of groups A, B, and C inspections.
- 4.3.1 Group A inspection. Group A inspection shall consist of the examinations and tests specified in table I.
- 4.3.2 Group B inspection. Group B inspection shall consist of the examinations and tests specified in table II.
- 4.3.3 Group C inspection. Group C inspection shall consist of the examinations and tests specified in table III. This inspection shall be conducted on the initial lot and thereafter every 6 months during production.
- 4.3.4 Group B and group C life-test samples. Samples that have been subjected to group B, 340-hours life-test, may be continued on test for 1,000 hours in order to satisfy group C life-test requirements. These samples shall be predesignated, and shall remain subjected to the group C 1,000 hour acceptance evaluation after they have passed the group B, 340-hour acceptance criteria. The cumulative total of failures found during 340-hour test and during the subsequent interval up to 1,000 hours shall be computed for 1,000-hour acceptance criteria, see 4.3.3.
- 4.4 Methods of examination and test. Methods of examination and test shall be as specified in tables I, II, and III.

DIMENSIONS							
LTR	INC	HES	MILLIN	MILLIMETERS			
LIK	MIN	MAX	MIN	MAX	OT ES		
Α	.335	.370	8.51	9.40			
В	.305	.335	7.75	8.51			
C	.240	.260	6.10	6.60			
٥	1.500	1.750	38.10	44.45	9		
Ε	.016	.021	.41	.53	2,9		
F	.016	.019	.41	.48	3,9		
G	.100		2.54		4		
Н					5		
J	.029	.045	.74	1.14	8		
K	.028	.034	.71	.86			
L	.009	.125	.23	3.18			
M	.1414	Nom	3.59 1	6			
N	.0707	Nom	1.80 1	Vom	6		

NOTES:

- 1. Metric equivalents (to the nearest .01 mm) are given for general information only and are based upon 1 inch = 25.4 mm.
- 2. Measured in the zone beyond .250 (6.35 mm) from the seating plane.
- 3. Measured in the zone .050 (1.27 mm) and .250 (6.35 mm) from the seating plane.
- 4. Variations on Dim B in this zone shall not exceed .010 (.25 mm).
- 5. Outline in this zone is not controlled.
- 6. When measured in a gaging plane .054+.001,-.000 (1.37+.03,-.00 mm) below the seating plane of the transistor max dia leads shall be within .007 (.18 mm) of their true location relative to a maximum width tab. Smaller dia leads shall fall within the outline of the max dia lead tolerance. Figure 2 preferred measured method.
- 7. The collector shall be internally connected to the case.
- 8. Measured from the maximum diameter of the actual device.
- 9. All 3 leads. (See 3.3.1).

FIGURE 1. Physical dimensions of transistor type 2N1195 (TO-5).

NOTES:

- 1. The following gaging procedure shall be used:
 The use of a pin straightener prior to insertion
 in the gage is permissible. The device being
 measured shall be inserted until its seating
 plane is .125±.010 (3.18 mm ±.25 mm) from the
 seating surface of the gage. A spacer may be
 used to obtain the .125 (3.18 mm) distance from
 the gage seat prior to force application. A force
 of 8 oz ±.5 oz shall then be applied parallel and
 symmetrical to the device's cylindrical axis.
 When examined visually after the force application (the force need not be removed) the
 seating plane of the device shall be seated
 against the gage.
- 2. The location of the tab locator, within the limits of dim C, will be determined by the tab and flange dimension of the device being checked.
- 3. Metric equivalents (to the nearest .01 mm) are given for general information only and are based upon 1 inch = 25.4 mm.

	DIMENSIONS								
LTR	INC	HES	MILLIMETERS						
LIK	MIN	MAX	MIN	MAX					
A	.1409	.1419	3.58	3.60					
В	.0702	.0712	1.78	1.81					
C	.182	.199	4.62	5.05					
D	.009	.011	.23	.28					
E	,125	Nom	3.18 Nom						
F	.054	.055	1.37	1.40					
G	.372	.378	9.45	9.60					
H	.0350	.0355	-89	.90					
J	.150 Nom		3.81	Nom					
K	.0325	.0335	.83	.85					
L	.0595	.0605	1.51	1.54					

FIGURE 2. Gage for lead and tab location for transistor type 2N1195.

TABLE I. Group A inspection.

		MIL-STD-750	L T			Limits	,
Examination or test	Method	Details	P D	Symbol	Min	Max	Unit
Subgroup 1			10				
Visual and mechanical examination	2071						
Subgroup 2			5				
Breakdown voltage, collector to emitter	3011	Bias cond. D; $I_C = -5.0 \text{ mAdc} \frac{1}{4}$		BVCEO	-20		Vdc
Breakdown voltage, collector to base	3001	Bias cond. D; $I_C = -100 \mu Adc$		BVCBO	-30		Vdc
Breakdown voltage, emitter to base	3026	Bias cond. D; I _E = -100 μAdc		BV _{EBO}	-1.0		Vdc
Collector to base cutoff current	3036	Bias cond. D; $V_{CB} = -20 \text{ Vdc}$; $I_{E} = 0$		СВО		-5.0	μAdc
Emitter to base cutoff current	3061	Bias cond. D; $V_{EB} = -1 \text{ Vdc}$; $I_C = 0$		IEBO		-100	μ Ad c
Subgroup 3			5				
Small-signal short-circuit input impedance	3201	$V_{CB} = -10 \text{ Vdc};$ $I_{E} = 10 \text{ mAdc}$		h _{ib}		10	ohms
Small-signal open-circuit reverse-voltage transfer ratio	3211	$V_{CB} = -10 \text{ Vdc};$ $I_{E} = 10 \text{ mAdc}$		h _{rb}		3x10 ³	
Small-signal open-circuit output admittance	3216	$V_{CB} = -10 \text{ Vdc};$ $I_{E} = 10 \text{ mAdc}$		h _{ob}		20	μmho
Real part of small-signal short-circuit input impedance	3266	$V_{CE} = -10 \text{ Vdc};$ $I_{E} = 10 \text{ mAdc};$ $f = 250 \text{ MHz}$		REhie		80	ohms
Open-circuit output capacitance	3236	V_{CB} = -10 Vdc; I_{E} = 0; 100 kHz \leq f \leq 1 MHz		C _{obo}		1.5	pf
Subgroup 4			5				
Small-signal short-circuit forward-current transfer ratio	3206	$V_{CB} = -10 \text{ Vdc};$ $I_{E} = 10 \text{ mAdc}$		hfb	0.96	0.995	
Magnitude of common- emitter small-signal short-circuit forward- current transfer ratio	3306	V _{CE} = -10 Vdc; I _C = 10 mAdc; f = 100 MHz		h _{fe}	4		

 $^{1/}tp \le 100$ msec, duty cycle $\le 15\%$.

		L			• • • •	
	MIL-STD-750	${f T}$		Limits		
Method	Details	Ď	Symbol	Min	Мах	Unit
		20		•		
2066	(See figure 1)					
		15				
2026	Omit aging					
1051	Test cond. B; except T(high) = +100°C					
1056	Test cond. A; T(high) = +85° ±5°C T(low) = 0° ±2°C					
	MIL-STD-202, method 112, test cond. C, procedure III; test cond. B for gross leaks				5x10 ⁻⁷	atm cc/sec
1021						
3036	Bias cond. D; $V_{CB} = -20 \text{ Vdc}$; $I_E = 0$		^I CBO		-5.0	μAdc
3206	V _{CB} = -10 Vdc; I _E = 10 mAdc		^h fb	0.95		
		15				
2016	Nonoperating; 1, 500 G, 0.5 msec, 5 blows in each orientation: X ₁ , Y ₁ , Y ₂ , and Z ₁					
2046	Nonoperating					
2056						
2006	10,000 G; in each orientation: X_1 , Y_1 , Y_2 , and Z_1					
		20		,		
2036	Test cond. E					
		20				
1041						
	2066 2026 1051 1056 1021 3036 3206 2016 2046 2056 2006	Method Details	Method Details Detai	Method Details Details Symbol	Mil-STD-760 T P D Symbol Min	Method Details TPD Symbol Min Max 2066 (See figure 1) 20 2026 Omit aging 1051 Test cond. B; except T(high) = +100°C 1056 Test cond. A; T(high) = +85° ±5°C T(low) = 0° ±2°C 5x10 ⁻⁷ MIL-STD-202, method 112, test cond. C, procedure III; test cond. B for gross leaks 5x10 ⁻⁷ 1021 5x10 ⁻⁷ 3036 Bias cond. D; VCB = -20 Vdc; IE = 0 ICBO -5.0 3206 VCB = -10 Vdc; IE = 0 hfb 0.95 2016 Nonoperating; 1, 500 G, 0.5 msc, 5 blows in each orientation: X1, Y1, Y2, and Z1 2046 10, 000 G; in each orientation: X1, Y1, Y2, and Z1 2036 Test cond. E 20

TABLE II. Group B inspection - Continued

	MIL-STD-750		L T		Limits		
Examination or test	Method	Details	P D	Symbol	Min	Max	Unit
Subgroup 6 High-temperature life	1031	T _{stg} = +100°C; t = 340 hrs (see 4.3.4)	7				
(nonoperating)		t = 340 hrs (see 4.3.4)					
End points:	1						
Collector to base cutoff current	3036	Bias cond. D; V _{CB} = -20 Vdc		ICBO		-10	μ Ad c
Small-signal short-circuit forward-current transfer ratio	3206	V _{CB} = -10 Vdc; I _E = 10 mAdc		hfb	0.95		
Subgroup 7			7				
Steady state operation life	1026	$T_A = +25$ °C; $P_T = 250$ mW; $I_C = 40$ mAdc; $t = 340$ hrs (see 4.3.4)					
End points: (Same as subgroup 6)							

TABLE III. Group C inspection

		MIL-STD-750			Limits		
Examination or test	Method	Details	P D	Symbol	Min	Max	Unit
Subgroup 1			20			2	
Thermal resistance	3151			θ J-A		0.3	°C/mW
Subgroup 2			λ=10				
High-temperature life (nonoperating)	1031	$T_{stg} = +100^{\circ}C$ (see 4.3.4)					
End points:							
Collector to base cutoff current	3036	Bias cond. D; V _{CB} = -20 Vdc		I _{CBO}		-10	μAdc
Small-signal short-circuit forward-current transfer ratio	3206	$V_{CB} = -10 \text{ Vdc}$ $I_{E} = 10 \text{ mAdc}$		h _{fb}	0.95		
Subgroup 3			λ=10				
Steady state operation life	1026	$T_A = +25$ °C; $P_T = 250$ mW; $I_C = 40$ mAdc (see 4.3.4)					
End points: (Same as subgroup 2)							

MIL-S-19500/71D

- 5. PREPARATION FOR DELIVERY
- 5.1 See MIL-S-19500, section 5.
- 6. NOTES
- 6.1 Notes. The notes specified in MIL-S-19500 are applicable to this specification.
- 6.2 Ordering data.
 - (a) Lead finish if other than gold-plated Kovar (see 3.3.1).
- 6.3 Changes from previous issue. Asterisks are not used in this revision to identify changes with respect to the previous issue, due to the extensiveness of the changes.
- 6.4 Substitution criteria. The device covered herein is interchangeable with the device covered by the superseded MIL-S-19500/71C.

Custodians:

Army - EL

Navy - SH Air Force - 11

Preparing activity: Navy - SH

(Project 5961-0008-04)

Review activities:

Army - EL, MU, MI

Navy - SH

Air Force - 11, 17, 85

Code "C"

User activities:

Army - SM Navy - CG, MC, AS, OS

Air Force - 14, 19